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Dynamic turbulence modelling in large-eddy
simulations of the cloud-topped atmospheric

boundary layer

By M. P. Kirkpatrick, N. N. Mansour, A. S. Ackerman †, and D. E. Stevens ‡

1. Motivation and Objectives

The use of large eddy simulation, or LES, to study the atmospheric boundary layer
dates back to the early 1970s when Deardorff (1972) used a three-dimensional simulation
to determine velocity and temperature scales in the convective boundary layer. In 1974
he applied LES to the problem of mixing layer entrainment (Deardorff 1974) and in 1980
to the cloud-topped boundary layer (Deardorff 1980b). Since that time the LES approach
has been applied to atmospheric boundary layer problems by numerous authors.

While LES has been shown to be relatively robust for simple cases such as a clear,
convective boundary layer (Mason 1989), simulation of the cloud-topped boundary layer
has proved more of a challenge. The combination of small length scales and anisotropic
turbulence coupled with cloud microphysics and radiation effects places a heavy bur-
den on the turbulence model, especially in the cloud-top region. Consequently, over the
past few decades considerable effort has been devoted to developing turbulence models
that are better able to parameterise these processes. Much of this work has involved
taking parameterisations developed for neutral boundary layers and deriving corrections
to account for buoyancy effects associated with the background stratification and local
buoyancy sources due to radiative and latent heat transfer within the cloud (see Lilly
1962; Deardorff 1980a; Mason 1989; MacVean & Mason 1990, for example). In this pa-
per we hope to contribute to this effort by presenting a number of turbulence models
in which the model coefficients are calculated dynamically during the simulation rather
than being prescribed a priori.

The dynamic procedure, first proposed by Germano et al. (1991), computes model
coefficients using information contained in the resolved velocity and scalar fields. In this
sense dynamic models can be considered self-calibrating, a feature that makes them an
appealing choice for dealing with the complex interactions between the hydrodynamics,
radiation and cloud microphysics occurring within clouds. Nevertheless, while dynamic
turbulence models have been used with considerable success for complex engineering
flows (see Boivin et al. 2000; Branley & Jones 2001, for example), their application to
atmospheric flows has been very limited.

The objective of this paper is to present a set of dynamic turbulence models written
in a form appropriate for large eddy simulations of the atmospheric boundary layer in
which the flow is described using equations of motion in anelastic form . The models are
tested using simulations of a nocturnal marine stratocumulus cloud observed during dur-
ing the second Dynamics and Chemistry of Marine Stratocumulus (DYCOMS-II) field
experiment. This test case includes a number of features that typically cause problems
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in simulations of the atmospheric boundary layer, including the presence of a strong
temperature inversion at the level of the cloud top, and positive feedback loops involv-
ing turbulent entrainment across the inversion, radiation and cloud microphysics. As
such, these simulations provide a good test for the utility of our models. Simulations
are performed using the atmospheric boundary layer LES code, DHARMA, (Stevens &
Bretherton 1999; Stevens et al. 2000), with dynamic turbulence models computed using
the new LLAMA code presented here.

2. Dynamic turbulence models for the anelastic equations

The dynamics of the cloud-topped atmospheric boundary layer can be described using
equations for conservation of mass, momentum, liquid water potential temperature and
total water mixing ratio. These equations are written in the anelastic form of Ogura &
Phillips (1962) in which the thermodynamic variables such as pressure p are decomposed
into an isentropic base state p0 (corresponding to a uniform potential temperature θ0)
and a dynamic component. Following Clark (1979), the dynamic component is further
decomposed into an initial environmental deviation in hydrostatic balance p1 and a time-
evolving dynamic perturbation p2 to give

p(x, y, z, t) = p0(z) + p1(z) + p2(x, y, z, t). (2.1)

After subtracting hydrostatic balances, the resulting continuous equations are written,
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Here ui are the Cartesian components of the velocity vector, % the density, δij the Kro-
necker delta, εijk the permutation tensor, fj the Coriolis parameter, g the acceleration
due to gravity, qt the total water mixing ratio and θ∗l = (θl − θ0)/θ0 a scaled liquid wa-
ter potential temperature. Total water mixing ratio is the sum of the liquid and vapour
mixing ratios,

qt = qc + qv =
%c + %v
%d

, (2.6)

where %c, %v and %d are the density of the condensed water, water vapour and dry air
respectively. Liquid water potential temperature is defined as

θl = θ −
Lqc
Cpdπ0

. (2.7)

Here L is the latent heat of vaporisation, Cpd the specific heat at constant pressure for

dry air and π0 =
(

p0
pref

)Rd
Cp

with pref a reference pressure and Rd the gas constant of

dry air. The virtual potential temperature θv appearing in the buoyancy term of the
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momentum equations is given by

θv = θ + θ0

[(
Rd

Rv
− 1

)
qv − qc

]
, (2.8)

where Rv is the gas constant for water vapour. The terms Hui
, Hθ∗

l
and Hqt

are source
terms that include parameterisations for physical processes such as radiation, precipita-
tion and the effects of the global atmospheric circulation.

In a large eddy simulation, the equations are filtered to remove from the solution those
fluctuations that cannot be resolved by the numerical method. For the anelastic equations
it is convenient to use a density-weighted or Favre filter, where a Favre filtered variable
is defined as φ̃ = %φ/%. Application of this filter to the equations gives

∂%0ũi
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with subgrid scale stresses and fluxes given by
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We have assumed here that fj is constant so that the Coriolis term is linear - an assump-
tion that is valid when the domain is small compared to the Rossby radius of deformation.
The source termsH are shown without an overbar since they are parameterisations rather
than exact terms.

The Smagorinsky model (Smagorinsky 1963) for the subgrid scale stress is

τaij = τij −
1

3
δijτkk = −2%0KmD̃ijCB , (2.16)

where D̃ij is the strain rate tensor,

D̃ij =
1

2

(
∂ũi
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3
δij
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. (2.17)

Here and elsewhere in this paper the superscript a is used to denote the anisotropic part
of a tensor. The eddy viscosity Km is given by

Km = C∆2
∣∣∣D̃

∣∣∣ , (2.18)

with
∣∣∣D̃

∣∣∣ =
√

2D̃ijD̃ij and C a dimensionless coefficient. Stratification effects are ac-
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counted for using the correction of Lilly (1962),

CB = (1−Risgs)
1/2

Risgs < 1 (2.19)

CB = 0 Risgs ≥ 1, (2.20)

where the subgrid scale flux Richardson number is estimated using

Risgs =
g/θ0 ∂θ̃v/∂z

Prsgs|D̃|2
. (2.21)

Prsgs is the subgrid scale turbulent Prandtl number, which we set to a constant value of
Prsgs = 0.4.

The mixed model of Bardina et al. (1983), combines the Smagorinsky model with the
scale similarity model of Bardina et al. (1980). The model is derived by rewriting the
subgrid scale stress tensor in terms of resolved and unresolved parts of the velocity field
ui = ũi+u′i using the decomposition of Germano (1986). For the anelastic equations this
decomposition takes the form

τij = L∗
ij + C∗

ij +R∗
ij , (2.22)

where the modified Leonard, cross and SGS Reynolds terms are

L∗
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′
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The modified Leonard term, which contains only resolved scale quantities, can be calcu-
lated explicitly leaving the modified cross and SGS Reynolds terms to be parameterised
using the Smagorinsky model,

τij = L∗
ij − 2%0C∆2

∣∣∣D̃
∣∣∣ D̃ijCB . (2.26)

Martin et al. (2000) note that, with the mixed model, the isotropic part of the subgrid
scale stress τij can be represented at least partially by the isotropic part of the modified
Leonard term. In fact they obtained the closest agreement with experiment for their
compressible flow test cases when they assumed that the isotropic part of L∗

ij models the

whole of 1
3
δijτkk. We have adopted the same approach in Eq.(2.26).

In dynamic versions of these models, the model coefficient C is calculated dynamically.
To achieve this, a test filter is applied to the velocity and scalar fields to extract informa-
tion from the smallest resolved scales. Application of a spatial test filter (denoted here
by a caret) to the filtered momentum equations gives
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In order to rewrite this equation in a form similar to Eq.(2.9) we adopt a Favre test filter

φ̆ = %̂φ/%̂ giving

∂%̂0
˘̃ui

∂t
+
∂(%̂0

˘̃uiũj)
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. (2.28)

Since density varies only in the z direction, this equation can be simplified considerably
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by using two-dimensional horizontal test filter rather than a three-dimensional one. The
Favre test filter is then equivalent to a spatial test filter,

˘̃
φ ≡

̂̃
φ, (2.29)

and the density field is unchanged by the test filtering operation, that is,

%̂0 = %0. (2.30)

From Eqs.(2.29) and (2.30), with horizontal test filtering Eq.(2.28) becomes
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Alternatively, application of the grid and test filters together to the continuous equations
gives
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̂̃uî̃uj)
∂xj

= −
∂p̂∗2
∂xi

+ δi3%̂2g − εijk%0
̂̃ukfj +Hui

−
∂Tij
∂xj

, (2.33)
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Comparison of Eqs.(2.32) and (2.33) gives the Germano identity,

Lij = Tij − τ̂ij . (2.35)

The dynamic procedure assumes that the same parameterisation that is used to pa-
rameterise the SGS stress at the grid filter level τij can be used to model the test level
stress Tij . The test level stress for the Smagorinsky and mixed models are written as
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respectively. Here ĈB is given by
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with the test level Richardson number given by
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The test level modified Leonard term in the mixed model L∗T
ij is found by decomposing Tij
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in a manner similar to the decomposition of τij (see Eq.(2.22)). Substituting ui = ̂̃ui+u′′i
into Eq.(2.34) gives

Tij = L∗T
ij + C∗T

ij +R∗T
ij , (2.41)

where the modified Leonard, cross and Reynolds terms at the test level are

L∗T
ij = %0(

̂̂̃
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In Eqs.(2.36-2.44) we have again used the fact that we assume a horizontal test filter so
that Eqs.(2.29-2.30) can be used to simplify the equations.

The decomposition shown in Eqs.(2.42-2.44) is different from that derived by Zang
et al. (1993), who used a decomposition based on ui = ũi + u′i at both the grid and test

level, rather than the form ui = ̂̃ui+u′′i used here for the test level. As noted by Vreman
et al. (1994), the latter is more consistent with the dynamic procedure since the test level
stress should be written in terms of test filtered velocity components in order to make
the test level parameterisations analogous to those used at the grid level.

Substituting the parameterisations for the subgrid scale stress τij (Eq.(2.26)) and test
level stress Tij (Eq.(2.37)) into the Germano identity (Eq.(2.35)) gives
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Removing the constant factor %0, and contracting tensors using the least squares approach
of Lilly (1992) gives an equation for the model coefficient in the dynamic mixed model,
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α is the ratio of the test and grid filters

α = ∆̂/∆, (2.50)

and< > indicates averaging on horizontal planes. Equivalently, for the dynamic Smagorin-
sky model,

C∆2 = −
< MijL

∗a
ij >

< 2MklMkl >
. (2.51)

The models outlined above use the original dynamic procedure of Germano et al.

(1991) and require averaging in homogeneous directions to remain stable. Ghosal et al.
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(1995) recast the dynamic procedure as a constrained variational problem and used this
approach to develop a “dynamic localization model” that does not require averaging.
This model, however, requires the solution of an integral equation and is computationally
expensive. A less expensive alternative proposed by Piomelli & Liu (1995) involves finding
an approximate solution to the integral equation by using the value of C at the previous
time step to give a first approximation C∗. Applying their procedure gives localised
versions of the models. The coefficient for the localised dynamic Smagorinsky model is
given by

C = −
(L∗a

ij − 2 ̂C∗Bij)Aij

2AklAkl
. (2.52)

where,

Aij = α2∆2

∣∣∣∣
̂̃
D

∣∣∣∣
̂̃
DijĈB , (2.53)

Bij = ∆2
∣∣∣D̃

∣∣∣ D̃ijCB . (2.54)

The coefficient for the localised dynamic mixed model is

C = −
(L∗

ij −Hij − 2 ̂C∗Bij)Aij

2AijAij
, (2.55)

with Aij and Bij given by Eqs.(2.53) and (2.54) respectively and Hij given by Eq.(2.49).

We note here that by using a horizontal test filter we have reduced the complexity of
our models considerably. With three-dimensional test filtering the models would be of
similar complexity to the equivalent dynamic models for compressible flow whereas, when
a horizontal filter is used, the models for the anelastic equations become similar to those
for incompressible flow. In fact, if the discretisation operator is taken as being equivalent
to the first level of grid scale Favre filtering (that is, we assume implicit filtering at the
grid scale), then the only difference in the implementation occurs in the mixed model,
where the second grid scale filter in the formula for Hij (Eq.(2.49)) is a Favre filter that
must be applied explicitly.

An interesting feature of the localised dynamic model is that, if unconstrained, it can
calculate negative values for the model coefficient, and thus predict regions of negative
eddy viscosity. While such regions may be interpreted as regions of backscatter, or energy
transfer from small to large scales, Ghosal et al. (1995) and Carati et al. (1995) note that
the dynamic Smagorinsky model has no information about how much energy is actually
available in the subgrid scales. Consequently, there is no mechanism by which such a
“counter-gradient diffusion” model for backscatter can be turned off once all the subgrid
scale energy has been removed. For this reason we chose to clip the eddy viscosity at
zero. For the localised model backscatter is therefore included. For the plane averaged
dynamic Smagorinsky model, however, the effect of backscatter is included in an average
sense through a reduction of the plane averaged model coefficient. As noted above, in the
mixed model the Leonard term allows backscatter, so there is no need to resort to using
a negative eddy viscosity.

The Smagorinsky and mixed models for the subgrid scale fluxes of the scalar variables
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are written

γφ = −%0Cφ∆
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φũj −

˜̃
φ˜̃uj)− %0Cφ∆

2
∣∣∣D̃

∣∣∣ ∂φ̃
∂xj

CB . (2.57)

Here φ is a generic scalar representing θ∗l or qt. The mixed model includes a term repre-
senting the scalar equivalent of the modified Leonard term,
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Equations for the model coefficients are then written in a form analogous to that used
for the subgrid scale stress. For the plane averaged dynamic Smagorinsky model,
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For the dynamic mixed model,

Cφ∆
2 = −

< Fj(Ej −Gj) >

< FkFk >
, (2.62)

where

Gj = (
̂̂̃
φ̃ ̂̃uj −

̂̂̃
φ̃
̂̂̃
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The coefficient for the localised dynamic Smagorinsky model is given by
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The coefficient for the localised dynamic mixed model is

Cφ = −
(Ej −Gj − Ĉ∗

φQj)Pj

PkPk
, (2.67)

with Pj and Qj given by Eqs.(2.65) and (2.66) respectively, and Gj given by Eq.(2.63).
Close to the rough surface at the bottom of the domain the size of the turbulent eddies

decreases and the turbulence models described above do not give the correct dissipation.
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The standard Smagorinsky model is over-dissipative while the dynamic models are under-
dissipative. With the standard Smagorinsky model we use a damping function suggested
by Mason (1994),

1

∆∗2
=

1

∆2
+

1

(k(z + z0))2
, (2.68)

where k is the Von Kàrmàn constant and z0 the roughness length. With all models we
also add a surface layer stress term suggested by Brown et al. (2001). This stress takes
the form

τsfc = −

∫
Csfca(z)ρ0|u|φdz, (2.69)

where Csfc is a scaling factor, a(z) a smoothing function, |u| the horizontal wind speed
and φ the dependent variable. At present we follow Chow & Street (2002) and choose
Csfc to give τsfc equal to half the surface flux at the first grid point above the wall.

3. Simulation results

The test case chosen for the simulations is the first research flight (RF01) of the second
Dynamics and Chemistry of Marine Stratocumulus (DYCOMS-II) field experiment. The
computational domain extends 3.2km in the two horizontal directions and 1.5km in the
vertical direction, with 96× 96× 128 cells in the x, y and z directions respectively. Cell-
spacing is uniform in the horizontal directions and stretched in the vertical direction to
give cells of height 5m close to the bottom surface and in the vicinity of the inversion.
This grid is typical of that currently used in large eddy simulations of the atmospheric
boundary layer. The spatial discretisation uses a second-order centered scheme with
no flux limiting, while time integration uses a second order Runge-Kutta scheme. The
simulation is integrated over a period of four hours. Further details of the simulation
set-up are described in Kirkpatrick et al. (2003) and will not be repeated here.

In the following we compare results obtained with four of the SGS turbulence models
described above: the standard Smagorinsky (SM), dynamic Smagorinsky (DSM), dy-
namic mixed (DMM) and localised dynamic Smagorinsky model (LDSM). The standard
Smagorinsky model uses a constant coefficient of CS = C1/2 = 0.18 and a Prandtl
number of Prsgs = 0.4. For reference, we also show results obtained with no SGS model.

Figure 1 shows vertical profiles of condensed water, liquid water potential temperature,
eddy viscosity and diffusivities and SGS Prandtl number predicted by the various models.
These profiles are calculated by averaging over horizontal planes as well as over a time
period of 30 minutes. All profiles are calculated for the last half hour of the simulation,
that is for t = 3.5 − 4h. The dynamic Smagorinsky models give quantitatively similar
profiles to the standard Smagorinsky model. LDSM gives somewhat higher average eddy
viscosity and diffusivities than DSM. This is because negative values of eddy viscosity
predicted by LDSM are clipped, whereas with DSM conditions that would produce lo-
cal negative values have the effect of reducing the plane average. The unclipped model
coefficient profiles for DSM and LDSM (not shown) were found to be almost identical.
The dynamic mixed model gives lower values of eddy viscosity and diffusivity because
the Leonard term component of the SGS stress is included separately. All models predict
a SGS turbulent Prandtl number close to the standard value of 0.4 through most the
boundary layer, although DSM predicts an increase to a value of approximately 2 in the
region just below the inversion. The reason for this behaviour, which is not seen with the
other models, is not clear at present.
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Figure 1. Vertical profiles of condensed water, liquid water potential temperature, eddy vis-
cosity and diffusivities, and SGS Prandtl number: · · · SM, − − − DSM, − · − LDSM, − · · · −
DMM.
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Figure 2. Time series of inversion height, cloud fraction and liquid water path: no SGS
model, · · · SM, −−− DSM, − · − LDSM, − · · ·− DMM.

Figure 2 shows time series of inversion height zinv, liquid water path LWP and cloud
fraction. The entrainment rate E can be estimated from the rate of change of zinv using
the formula,

E =
dzinv
dt

− wsub. (3.1)

Here wsub is the subsidence velocity, which for the present case is estimated to be
−0.3cms−1. dzinv/dt is calculated as the average rate of change over the period t = 2−4h.
The dynamic Smagorinsky models give an entrainment rate of approximately 0.36-
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Figure 3. Eddy diffusivity, buoyancy frequency, and SGS and resolved buoyancy production
at cloud-top: · · · SM, −−− DSM, − · − LDSM, − · · ·− DMM.

0.37cms−1, while the dynamic mixed model gives 0.40cms−1. These results are in excellent
agreement with the entrainment rate E = 0.38±0.04cms−1 estimated from observational
measurements. The standard Smagorinsky model, however, overpredicts entrainment sig-
nificantly giving E ≈ 0.55cms−1. The entrainment rate with no SGS model is 0.34cms−1,
which is slightly lower than that obtained with the dynamic models, but still within the
error bounds of the observational measurements. The observed liquid water path and
cloud fraction remained approximately constant during the experiment. This is also well
predicted with dynamic models and no SGS model, while with the standard Smagorinsky
model the results for these parameters again deviate significantly.

To help explain these differences, Figure 3 shows a comparison of the eddy diffusivity
Kh, squared buoyancy frequency N 2, resolved buoyancy production B and subgrid scale
buoyancy production Bsgs. Subgrid scale buoyancy production is approximated as

Bsgs ≈ −KhN
2. (3.2)

The buoyancy frequency is calculated using a method described by Stevens et al. (2002).
This approach is an extension of the work of MacVean & Mason (1990) and takes into
account changes in stability that occur when subgrid scale mixing causes condensation or
evaporation. Figure 3 shows the eddy diffusivity predicted by the standard Smagorinsky
model decreasing through the inversion as a result of the stable stratification which drives
the buoyancy correction coefficient CB in the model to zero (see Eq.(2.16)). There is,
however, a significant overlap region in which both the eddy diffusivity and buoyancy
frequency are large. From Figure 3 and Eq.(2.16) it is clear that this overlap region



LES of the cloud-topped atmospheric boundary layer 35

-0.15 -0.10 -0.05 -0.00 0.05 0.10 0.15
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

0.0 0.1 0.2 0.3 0.4 0.5 0.6
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

PSfrag replacements

< w′2 > (m2s−2)< w′3 > (m3s−3)

z
(k
m
)

z
(k
m
)

Figure 4. Second and third moments of vertical velocity. Simulation results (resolved component
only): no SGS model, · · · SM, −−− DSM, − · − LDSM, − · · ·− DMM. Measurements:
radar data (open circles), in situ measurements (filled circles).

also constitutes a zone of negative subgrid scale buoyancy production. Meanwhile the
resolved buoyancy production with SM is similar to that seen with the other models.
Negative buoyancy production is associated with conversion of mechanical energy into
potential energy. In the present case this is interpreted as turbulence doing work to
mix the warmer air above the inversion with cooler boundary-layer air below. Thus, the
extra −Bsgs provided by the standard Smagorinsky model is the cause of the enhanced
entrainment rate seen with this model. Excessive entrainment of warm, dry air across the
inversion then leads to the observed reduction of cloud fraction and liquid water path.

The same effect is not seen with the dynamic models which damp the model coefficient
so that it becomes zero just below the inversion. Consequently there is no overlap region
and no region of significant negative SGS buoyancy production. By coincidence, the
same effect is also achieved when no SGS model is used, which explains the similarity
between the results obtained with the dynamic models and no SGS model for large scale
parameters such as entrainment rate, liquid water path and cloud fraction.

Figure 4 shows vertical profiles for the second and third moments of the resolved ver-
tical velocity component compared with the observational measurements. The second
moment is well predicted in the dynamic model simulations, with numerical results in
excellent agreement with observations. The shape of the profiles obtained with the dy-
namic models is also typical of a well-mixed boundary layer as is expected for nocturnal
stratocumulus. In contrast, the simulation using the standard Smagorinsky model does
not agree as well with the observations and gives a two-peaked profile. Such a profile
indicates a decoupling of the cloud layer and sub-cloud layer which is not apparent in
the observational results.
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The differences in profiles of the third moment are even more striking. The standard
Smagorinsky model gives reasonable results in the surface layer, but does not give the
negative values observed in the cloud layer. The dynamic models, on the other hand, give
good agreement with the observations throughout the boundary layer, although, close to
the surface they appear to under-predict the magnitude of this statistic somewhat. More
work is required on the surface layer model to improve this.

4. Future work

The results presented in this paper clearly demonstrate the utility of dynamic turbu-
lence models for atmospheric simulations. There is, however, much work still to be done.
At present we are using a second-order accurate scheme for the spatial-discretisation.
Consequently the numerical errors are of a similar magnitude to the terms associated
with the subgrid scale models. The authors are currently working on a fourth-order
scheme to resolve this issue. More work is also required in refining the surface layer
model, especially where it is applied in combination with the dynamic models. As dis-
cussed above, dynamic models tend to underpredict the dissipation in the surface layer.
This is because as the surface is approached the energetic eddies are no longer resolved
and the assumptions underlying the dynamic procedure break down. While the current
surface layer model helps to overcome these issues, the surface layer velocity and scalar
profiles still deviate significantly from profiles predicted by similarity theory.
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